Properties

Label 18300.a.5.b1.a1
Order $ 2^{2} \cdot 3 \cdot 5 \cdot 61 $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$F_{61}$
Order: \(3660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 61 \)
Index: \(5\)
Exponent: \(3660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 61 \)
Generators: $a^{30}, b^{5}, a^{12}, a^{40}, a^{15}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Ambient group ($G$) information

Description: $C_5\times F_{61}$
Order: \(18300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 61 \)
Exponent: \(3660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 61 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{305}.C_{15}.C_4^2$
$\operatorname{Aut}(H)$ $F_{61}$, of order \(3660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 61 \)
$W$$F_{61}$, of order \(3660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 61 \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_5\times F_{61}$
Complements:$C_5$ $C_5$ $C_5$ $C_5$ $C_5$
Minimal over-subgroups:$C_5\times F_{61}$
Maximal under-subgroups:$C_{61}:C_{30}$$C_{61}:C_{20}$$C_{61}:C_{12}$$C_{60}$
Autjugate subgroups:18300.a.5.b1.b118300.a.5.b1.c118300.a.5.b1.d118300.a.5.b1.e1

Other information

Möbius function$-1$
Projective image$C_5\times F_{61}$