Properties

Label 1824.764.2.a1
Order $ 2^{4} \cdot 3 \cdot 19 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}\times D_{38}$
Order: \(912\)\(\medspace = 2^{4} \cdot 3 \cdot 19 \)
Index: \(2\)
Exponent: \(228\)\(\medspace = 2^{2} \cdot 3 \cdot 19 \)
Generators: $c^{76}, b^{2}, c^{12}, c^{114}, b, a$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_4\times C_{12}\times D_{19}$
Order: \(1824\)\(\medspace = 2^{5} \cdot 3 \cdot 19 \)
Exponent: \(228\)\(\medspace = 2^{2} \cdot 3 \cdot 19 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_{114}.C_9.C_2^4$
$\operatorname{Aut}(H)$ $C_{38}.C_{18}.C_2^5$
$\card{\operatorname{res}(S)}$\(21888\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 19 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{19}$, of order \(38\)\(\medspace = 2 \cdot 19 \)

Related subgroups

Centralizer:$C_4\times C_{12}$
Normalizer:$C_4\times C_{12}\times D_{19}$
Minimal over-subgroups:$C_4\times C_{12}\times D_{19}$
Maximal under-subgroups:$C_{12}\times D_{19}$$C_6\times D_{38}$$C_2\times C_{228}$$C_{114}:C_4$$C_4\times D_{38}$$C_2^2\times C_{12}$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$-1$
Projective image$D_{38}$