Properties

Label 1824.363.2.d1.c1
Order $ 2^{4} \cdot 3 \cdot 19 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{19}:(C_3\times Q_{16})$
Order: \(912\)\(\medspace = 2^{4} \cdot 3 \cdot 19 \)
Index: \(2\)
Exponent: \(456\)\(\medspace = 2^{3} \cdot 3 \cdot 19 \)
Generators: $b^{18}, b^{12}, c^{2}, b^{8}, b^{3}, ab^{12}c^{19}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{19}:(C_6\times Q_{16})$
Order: \(1824\)\(\medspace = 2^{5} \cdot 3 \cdot 19 \)
Exponent: \(456\)\(\medspace = 2^{3} \cdot 3 \cdot 19 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{38}.C_{18}.C_2^6$
$\operatorname{Aut}(H)$ $C_{38}.C_{18}.C_2^3$
$\card{\operatorname{res}(S)}$\(5472\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 19 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_{38}:C_6$, of order \(456\)\(\medspace = 2^{3} \cdot 3 \cdot 19 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_{19}:(C_6\times Q_{16})$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_{19}:(C_6\times Q_{16})$
Maximal under-subgroups:$C_{76}.C_6$$C_{76}.C_6$$C_{19}:C_{24}$$C_{19}:Q_{16}$$C_3\times Q_{16}$
Autjugate subgroups:1824.363.2.d1.a11824.363.2.d1.b11824.363.2.d1.d1

Other information

Möbius function$-1$
Projective image$C_2\times D_{38}:C_6$