Properties

Label 1824.289.96.a1
Order $ 19 $
Index $ 2^{5} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{19}$
Order: \(19\)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(19\)
Generators: $c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $19$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_4\times C_{76}:C_6$
Order: \(1824\)\(\medspace = 2^{5} \cdot 3 \cdot 19 \)
Exponent: \(228\)\(\medspace = 2^{2} \cdot 3 \cdot 19 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_4\times C_{12}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^7:S_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Outer Automorphisms: $C_2^7:S_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_{114}.C_9.C_2^3$
$\operatorname{Aut}(H)$ $C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(7296\)\(\medspace = 2^{7} \cdot 3 \cdot 19 \)
$W$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_4\times C_{76}$
Normalizer:$C_4\times C_{76}:C_6$
Complements:$C_2\times C_4\times C_{12}$
Minimal over-subgroups:$C_{19}:C_3$$C_{38}$$D_{19}$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_4\times C_{76}:C_6$