Properties

Label 1824.279.456.a1.a1
Order $ 2^{2} $
Index $ 2^{3} \cdot 3 \cdot 19 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(456\)\(\medspace = 2^{3} \cdot 3 \cdot 19 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a $p$-group.

Ambient group ($G$) information

Description: $A_4:C_{152}$
Order: \(1824\)\(\medspace = 2^{5} \cdot 3 \cdot 19 \)
Exponent: \(456\)\(\medspace = 2^{3} \cdot 3 \cdot 19 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_{19}\times S_4$
Order: \(456\)\(\medspace = 2^{3} \cdot 3 \cdot 19 \)
Exponent: \(228\)\(\medspace = 2^{2} \cdot 3 \cdot 19 \)
Automorphism Group: $C_{18}\times S_4$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Outer Automorphisms: $C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_{18}\times S_4$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$A_4:C_{152}$
Normalizer:$A_4:C_{152}$
Minimal over-subgroups:$C_{76}$$C_{12}$$C_2\times C_4$$C_8$
Maximal under-subgroups:$C_2$

Other information

Möbius function$12$
Projective image$C_{19}\times S_4$