Subgroup ($H$) information
| Description: | $C_4$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Index: | \(456\)\(\medspace = 2^{3} \cdot 3 \cdot 19 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$a^{2}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a $p$-group.
Ambient group ($G$) information
| Description: | $A_4:C_{152}$ |
| Order: | \(1824\)\(\medspace = 2^{5} \cdot 3 \cdot 19 \) |
| Exponent: | \(456\)\(\medspace = 2^{3} \cdot 3 \cdot 19 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_{19}\times S_4$ |
| Order: | \(456\)\(\medspace = 2^{3} \cdot 3 \cdot 19 \) |
| Exponent: | \(228\)\(\medspace = 2^{2} \cdot 3 \cdot 19 \) |
| Automorphism Group: | $C_{18}\times S_4$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
| Outer Automorphisms: | $C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $3$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2\times C_{18}\times S_4$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2$, of order \(2\) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $A_4:C_{152}$ | |||
| Normalizer: | $A_4:C_{152}$ | |||
| Minimal over-subgroups: | $C_{76}$ | $C_{12}$ | $C_2\times C_4$ | $C_8$ |
| Maximal under-subgroups: | $C_2$ |
Other information
| Möbius function | $12$ |
| Projective image | $C_{19}\times S_4$ |