Subgroup ($H$) information
| Description: | $S_5$ | 
| Order: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) | 
| Index: | \(15120\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \cdot 7 \) | 
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) | 
| Generators: | $\langle(2,3,8)(5,6)(7,10), (3,10)(5,6)\rangle$ | 
| Derived length: | $1$ | 
The subgroup is nonabelian, almost simple, nonsolvable, and rational.
Ambient group ($G$) information
| Description: | $A_{10}$ | 
| Order: | \(1814400\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \) | 
| Exponent: | \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \) | 
| Derived length: | $0$ | 
The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_{10}$, of order \(3628800\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7 \) | 
| $\operatorname{Aut}(H)$ | $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) | 
| $W$ | $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) | 
Related subgroups
| Centralizer: | $S_3$ | ||||
| Normalizer: | $S_3\times S_5$ | ||||
| Normal closure: | $A_{10}$ | ||||
| Core: | $C_1$ | ||||
| Minimal over-subgroups: | $A_7$ | $S_6$ | $C_3\times S_5$ | $C_3:S_5$ | $C_2\times S_5$ | 
| Maximal under-subgroups: | $A_5$ | $S_4$ | $F_5$ | $D_6$ | 
Other information
| Number of subgroups in this conjugacy class | $2520$ | 
| Möbius function | $24$ | 
| Projective image | $A_{10}$ | 
