Properties

Label 18000.o.9000.d1.a1
Order $ 2 $
Index $ 2^{3} \cdot 3^{2} \cdot 5^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(9000\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(2\)
Generators: $\langle(1,3)(2,8)(4,5)(6,9)(7,12)(10,11)(14,15)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_5^3:(S_3\times S_4)$
Order: \(18000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times D_5^3.D_6$, of order \(72000\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$S_3\times D_{10}$
Normalizer:$S_3\times D_{10}$
Normal closure:$C_5^3:S_4$
Core:$C_1$
Minimal over-subgroups:$C_{10}$$D_5$$D_5$$D_5$$D_5$$C_6$$S_3$$C_2^2$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this conjugacy class$150$
Möbius function$-30$
Projective image$C_5^3:(S_3\times S_4)$