Properties

Label 18000.o.4.a1.a1
Order $ 2^{2} \cdot 3^{2} \cdot 5^{3} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_5^3:A_4$
Order: \(4500\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(1,2,8)(3,5,4)(6,7,12)(9,11,10)(13,14,15)(16,17,18), (2,14,5,11,7)(4,12,15,10,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_5^3:(S_3\times S_4)$
Order: \(18000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times D_5^3.D_6$, of order \(72000\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $S_3\times D_5^3.D_6$, of order \(72000\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{3} \)
$W$$D_5\wr S_3$, of order \(6000\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_5^3:(S_3\times S_4)$
Complements:$C_2^2$ $C_2^2$
Minimal over-subgroups:$C_5^3:(S_3\times A_4)$$(C_5^2\times C_{15}):S_4$$C_3\times C_5^3:S_4$
Maximal under-subgroups:$C_{15}:D_5^2$$C_5^3:A_4$$C_5^3:A_4$$C_5^3:C_3^2$$C_3\times A_4$

Other information

Möbius function$2$
Projective image$C_5^3:(S_3\times S_4)$