Subgroup ($H$) information
| Description: | $C_3\times C_5^3:A_4$ |
| Order: | \(4500\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{3} \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Generators: |
$\langle(1,2,8)(3,5,4)(6,7,12)(9,11,10)(13,14,15)(16,17,18), (2,14,5,11,7)(4,12,15,10,8) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, nonabelian, monomial (hence solvable), and an A-group.
Ambient group ($G$) information
| Description: | $C_5^3:(S_3\times S_4)$ |
| Order: | \(18000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3\times D_5^3.D_6$, of order \(72000\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{3} \) |
| $\operatorname{Aut}(H)$ | $S_3\times D_5^3.D_6$, of order \(72000\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{3} \) |
| $W$ | $D_5\wr S_3$, of order \(6000\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{3} \) |
Related subgroups
Other information
| Möbius function | $2$ |
| Projective image | $C_5^3:(S_3\times S_4)$ |