Properties

Label 18000.o.24.a1.a1
Order $ 2 \cdot 3 \cdot 5^{3} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2:D_{15}$
Order: \(750\)\(\medspace = 2 \cdot 3 \cdot 5^{3} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(2,14,5,11,7)(4,12,15,10,8), (1,3)(5,11)(6,9)(7,14)(8,12)(10,15)(17,18), (2,5,7,14,11), (16,18,17), (1,9,13,6,3)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_5^3:(S_3\times S_4)$
Order: \(18000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times D_5^3.D_6$, of order \(72000\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $S_3\times C_5^2:D_5.C_2.\PSL(3,5)$
$W$$C_5^3:(S_3\times S_4)$, of order \(18000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_5^3:(S_3\times S_4)$
Complements:$S_4$ $S_4$ $S_4$
Minimal over-subgroups:$C_5^2:(C_3\times D_{15})$$C_5^2:D_{30}$$C_5^2:D_{30}$
Maximal under-subgroups:$C_5^2\times C_{15}$$C_5^3:C_2$$C_5:D_{15}$$C_5:D_{15}$$C_5:D_{15}$$C_5:D_{15}$$C_5:D_{15}$

Other information

Möbius function$-12$
Projective image$C_5^3:(S_3\times S_4)$