Properties

Label 18000.o.18.e1.a1
Order $ 2^{3} \cdot 5^{3} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5^3$
Order: \(1000\)\(\medspace = 2^{3} \cdot 5^{3} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(8,12)(10,15)(17,18), (2,14,5,11,7)(4,12,15,10,8), (2,5,7,14,11), (5,11)(7,14)(8,12)(10,15), (1,3)(6,9)(8,12)(10,15), (1,9,13,6,3)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_5^3:(S_3\times S_4)$
Order: \(18000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times D_5^3.D_6$, of order \(72000\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $F_5\wr S_3$, of order \(48000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{3} \)
$W$$D_5\wr S_3$, of order \(6000\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_5\wr S_3$
Normal closure:$C_5^3:(C_2^2\times S_3)$
Core:$C_5:D_5^2$
Minimal over-subgroups:$C_5^3:(C_2^2\times S_3)$$D_5\wr C_3$$D_5^3:C_2$
Maximal under-subgroups:$C_5:D_5^2$$C_5:D_5^2$$C_5\times D_5^2$$D_5\times D_{10}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-3$
Projective image$C_5^3:(S_3\times S_4)$