Properties

Label 1800.704.8.a1
Order $ 3^{2} \cdot 5^{2} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2$
Order: \(225\)\(\medspace = 3^{2} \cdot 5^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $b^{10}, b^{3}, c^{6}, c^{20}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a Hall subgroup, and metacyclic.

Ambient group ($G$) information

Description: $C_6\times C_{15}:F_5$
Order: \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times \GL(2,3)\times C_5^2:C_4.S_5$
$\operatorname{Aut}(H)$ $\GL(2,3)\times \GL(2,5)$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$\GL(2,3)\times \GL(2,5)$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(50\)\(\medspace = 2 \cdot 5^{2} \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{15}\times C_{30}$
Normalizer:$C_6\times C_{15}:F_5$
Complements:$C_2\times C_4$
Minimal over-subgroups:$C_{15}\times C_{30}$$C_{15}^2:C_2$$C_{15}^2:C_2$
Maximal under-subgroups:$C_5\times C_{15}$$C_3\times C_{15}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{10}:F_5$