Subgroup ($H$) information
| Description: | $C_3\times C_{30}$ |
| Order: | \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \) |
| Index: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Generators: |
$c^{15}, c^{20}, b^{3}, b^{10}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_6\times C_{15}:F_5$ |
| Order: | \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $F_5$ |
| Order: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Automorphism Group: | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times \GL(2,3)\times C_5^2:C_4.S_5$ |
| $\operatorname{Aut}(H)$ | $C_4\times \GL(2,3)$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_4\times \GL(2,3)$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(1000\)\(\medspace = 2^{3} \cdot 5^{3} \) |
| $W$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $6$ |
| Number of conjugacy classes in this autjugacy class | $6$ |
| Möbius function | $0$ |
| Projective image | $C_5:F_5$ |