Subgroup ($H$) information
Description: | $C_2$ |
Order: | \(2\) |
Index: | \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
Exponent: | \(2\) |
Generators: |
$a^{4}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.
Ambient group ($G$) information
Description: | $(C_5\times C_{60}).S_3$ |
Order: | \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and an A-group.
Quotient group ($Q$) structure
Description: | $(C_5\times C_{30}).S_3$ |
Order: | \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Automorphism Group: | $C_2\times C_5^2:(C_2\times C_4\times S_3)$ |
Outer Automorphisms: | $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \) |
Nilpotency class: | $-1$ |
Derived length: | $3$ |
The quotient is nonabelian, monomial (hence solvable), and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times C_5^2:(C_2\times C_4\times S_3)$ |
$\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_1$, of order $1$ |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $(C_5\times C_{60}).S_3$ | |||||
Normalizer: | $(C_5\times C_{60}).S_3$ | |||||
Minimal over-subgroups: | $C_{10}$ | $C_{10}$ | $C_6$ | $C_6$ | $C_6$ | $C_4$ |
Maximal under-subgroups: | $C_1$ |
Other information
Möbius function | $0$ |
Projective image | $(C_5\times C_{30}).S_3$ |