Properties

Label 1800.255.6.b1.a1
Order $ 2^{2} \cdot 3 \cdot 5^{2} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2:C_{12}$
Order: \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $a^{2}, a^{4}, cd^{3}, b, d^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_5\times C_{60}).S_3$
Order: \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_5^2:(C_2\times C_4\times S_3)$
$\operatorname{Aut}(H)$ $F_{25}:C_2^2$, of order \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_5^2:(C_4\times D_6)$, of order \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_5^2:S_3$, of order \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$(C_5\times C_{60}).S_3$
Minimal over-subgroups:$C_3\times C_5^2:C_{12}$$(C_5\times C_{20}).S_3$
Maximal under-subgroups:$C_5^2:C_6$$C_5\times C_{20}$$C_{12}$

Other information

Möbius function$1$
Projective image$C_3\times C_5^2:S_3$