Properties

Label 1789200.a.44730._.B
Order $ 2^{3} \cdot 5 $
Index $ 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 71 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times Q_8$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(44730\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 71 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rr} 25 & 0 \\ 0 & 25 \end{array}\right), \left(\begin{array}{rr} 70 & 0 \\ 0 & 70 \end{array}\right), \left(\begin{array}{rr} 24 & 50 \\ 4 & 47 \end{array}\right), \left(\begin{array}{rr} 1 & 46 \\ 55 & 70 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_5\times \SL(2,71)$
Order: \(1789200\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 71 \)
Exponent: \(178920\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 71 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times \PSL(2,71).C_2$
$\operatorname{Aut}(H)$ $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{10}.S_4$
Normal closure:$C_5\times \SL(2,71)$
Core:$C_{10}$
Minimal over-subgroups:$C_{15}:Q_8$$C_5\times \SL(2,3)$$C_5\times Q_{16}$
Maximal under-subgroups:$C_{20}$$Q_8$
Autjugate subgroups:1789200.a.360._.A1789200.a.360._.B1789200.a.360._.C1789200.a.360._.D1789200.a.360._.E1789200.a.360._.F1789200.a.720._.A1789200.a.720._.B1789200.a.720._.C1789200.a.720._.D1789200.a.720._.E1789200.a.720._.F1789200.a.2520._.A1789200.a.2520._.B1789200.a.2520._.C1789200.a.2520._.D1789200.a.2520._.E1789200.a.2520._.F1789200.a.2982._.A1789200.a.2982._.B1789200.a.4970._.A1789200.a.4970._.B1789200.a.4970._.C1789200.a.5040._.A1789200.a.5040._.B1789200.a.5040._.C1789200.a.5040._.D1789200.a.5040._.E1789200.a.5040._.F1789200.a.7455._.A1789200.a.7455._.B1789200.a.7455._.C1789200.a.9940._.A1789200.a.9940._.B1789200.a.9940._.C1789200.a.12780._.A1789200.a.12780._.B1789200.a.14910._.A1789200.a.14910._.B1789200.a.14910._.C1789200.a.14910._.D1789200.a.14910._.E1789200.a.14910._.F1789200.a.14910._.G1789200.a.24850._.A1789200.a.24850._.B1789200.a.24850._.C1789200.a.25560._.A1789200.a.25560._.B1789200.a.25560._.C1789200.a.25560._.D1789200.a.29820._.A1789200.a.29820._.B1789200.a.29820._.C1789200.a.37275._.A1789200.a.37275._.B1789200.a.37275._.C1789200.a.44730._.A1789200.a.44730._.C1789200.a.49700._.A1789200.a.49700._.B1789200.a.49700._.C1789200.a.51120._.A1789200.a.51120._.B1789200.a.51120._.C1789200.a.51120._.D1789200.a.74550._.A1789200.a.74550._.B1789200.a.74550._.C1789200.a.74550._.D1789200.a.74550._.E1789200.a.89460._.A1789200.a.89460._.B1789200.a.149100._.A1789200.a.149100._.B1789200.a.149100._.C1789200.a.178920._.A1789200.a.178920._.B1789200.a.178920._.C1789200.a.178920._.D1789200.a.223650._.A1789200.a.223650._.B1789200.a.223650._.C1789200.a.357840._.A1789200.a.357840._.B1789200.a.357840._.C1789200.a.357840._.D

Other information

Number of subgroups in this conjugacy class$7455$
Möbius function$0$
Projective image$\PSL(2,71)$