Properties

Label 1760.61.2.a1.a1
Order $ 2^{4} \cdot 5 \cdot 11 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{22}:C_{40}$
Order: \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
Index: \(2\)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Generators: $a^{10}, b^{8}, a^{4}b^{44}, b^{22}, b^{11}, b^{44}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{88}.C_{20}$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_4\times F_{11}).C_2^4$
$\operatorname{Aut}(H)$ $C_2\times D_4\times F_{11}$, of order \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^3\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_{11}:C_{10}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$C_{88}.C_{20}$
Minimal over-subgroups:$C_{88}.C_{20}$
Maximal under-subgroups:$C_{22}:C_{20}$$C_{11}:C_{40}$$C_{11}:C_{40}$$C_2\times C_{88}$$C_2\times C_{40}$

Other information

Möbius function$-1$
Projective image$C_{44}:C_{10}$