Properties

Label 1760.55.160.a1.a1
Order $ 11 $
Index $ 2^{5} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}$
Order: \(11\)
Index: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Exponent: \(11\)
Generators: $c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $11$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $(C_2\times C_{88}):C_{10}$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $D_4:C_{20}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Automorphism Group: $C_4^2:C_2^4$, of order \(256\)\(\medspace = 2^{8} \)
Outer Automorphisms: $C_2^3\times C_4$, of order \(32\)\(\medspace = 2^{5} \)
Nilpotency class: $3$
Derived length: $2$

The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}.(C_2^5\times C_{10})$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(704\)\(\medspace = 2^{6} \cdot 11 \)
$W$$C_5$, of order \(5\)

Related subgroups

Centralizer:$D_4:C_{44}$
Normalizer:$(C_2\times C_{88}):C_{10}$
Complements:$D_4:C_{20}$
Minimal over-subgroups:$C_{11}:C_5$$C_{22}$$C_{22}$$C_{22}$$C_{22}$$C_{22}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$(C_2\times C_{88}):C_{10}$