Properties

Label 1760.415.4.b1.c1
Order $ 2^{3} \cdot 5 \cdot 11 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{44}.C_{10}$
Order: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $ab^{5}, b^{2}c^{44}, c^{44}, c^{22}, c^{8}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Ambient group ($G$) information

Description: $C_{11}:C_{10}\times Q_{16}$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_{44}).C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $S_4\times F_{11}$, of order \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_{44}:C_{10}$, of order \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_{11}:C_{10}\times Q_{16}$
Minimal over-subgroups:$Q_8\times C_{11}:C_{10}$$C_{88}.C_{10}$$C_{88}.C_{10}$
Maximal under-subgroups:$C_{11}:C_{20}$$C_{11}:C_{20}$$Q_8\times C_{11}$$C_5\times Q_8$
Autjugate subgroups:1760.415.4.b1.a11760.415.4.b1.b11760.415.4.b1.d1

Other information

Möbius function$2$
Projective image$C_2\times C_{44}:C_{10}$