Subgroup ($H$) information
| Description: | $C_4$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Index: | \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$c^{11}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.
Ambient group ($G$) information
| Description: | $(C_4\times C_{44}).C_{10}$ |
| Order: | \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \) |
| Exponent: | \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_{44}.C_{10}$ |
| Order: | \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \) |
| Exponent: | \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| Automorphism Group: | $S_4\times F_{11}$, of order \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
| Outer Automorphisms: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{22}.(C_{10}\times D_4).C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
| $\operatorname{res}(S)$ | $C_2$, of order \(2\) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(7040\)\(\medspace = 2^{7} \cdot 5 \cdot 11 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_{44}:C_{20}$ | ||
| Normalizer: | $(C_4\times C_{44}).C_{10}$ | ||
| Minimal over-subgroups: | $C_{44}$ | $C_{20}$ | $C_2\times C_4$ |
| Maximal under-subgroups: | $C_2$ | ||
| Autjugate subgroups: | 1760.406.440.b1.b1 |
Other information
| Möbius function | $0$ |
| Projective image | $Q_8\times C_{11}:C_{10}$ |