Properties

Label 1760.40.352.a1.a1
Order $ 5 $
Index $ 2^{5} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5$
Order: \(5\)
Index: \(352\)\(\medspace = 2^{5} \cdot 11 \)
Exponent: \(5\)
Generators: $a^{8}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $5$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $(C_2\times C_{22}):C_{40}$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times F_{11}).C_2^4$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(640\)\(\medspace = 2^{7} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2:C_{40}$
Normalizer:$C_2^2:C_{40}$
Normal closure:$C_{11}:C_5$
Core:$C_1$
Minimal over-subgroups:$C_{11}:C_5$$C_{10}$$C_{10}$$C_{10}$$C_{10}$$C_{10}$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$0$
Projective image$(C_2\times C_{22}):C_{40}$