Properties

Label 1760.40.20.e1.b1
Order $ 2^{3} \cdot 11 $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}:C_8$
Order: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Generators: $a^{5}c, a^{20}, c^{2}, a^{10}b$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $(C_2\times C_{22}):C_{40}$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times F_{11}).C_2^4$
$\operatorname{Aut}(H)$ $C_2^2\times F_{11}$, of order \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$C_2^2\times F_{11}$, of order \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_{22}:C_{40}$
Normal closure:$C_{22}:C_8$
Core:$C_{44}$
Minimal over-subgroups:$C_{11}:C_{40}$$C_{22}:C_8$
Maximal under-subgroups:$C_{44}$$C_8$
Autjugate subgroups:1760.40.20.e1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{22}:C_{10}$