Properties

Label 1760.355.55.a1.a1
Order $ 2^{5} $
Index $ 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times Q_{16}$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(55\)\(\medspace = 5 \cdot 11 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b^{5}, c^{11}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{11}:(C_{10}\times Q_{16})$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}.(C_{10}\times D_4).C_2^4$
$\operatorname{Aut}(H)$ $C_4.D_4^2$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$D_4^2:C_2$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10\)\(\medspace = 2 \cdot 5 \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_{10}\times Q_{16}$
Normal closure:$C_{22}:Q_{16}$
Core:$C_2\times Q_8$
Minimal over-subgroups:$C_{22}:Q_{16}$$C_{10}\times Q_{16}$
Maximal under-subgroups:$C_2\times Q_8$$C_2\times Q_8$$C_2\times C_8$$Q_{16}$$Q_{16}$$Q_{16}$$Q_{16}$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$1$
Projective image$D_{22}:C_{10}$