Properties

Label 1760.355.4.f1.a1
Order $ 2^{3} \cdot 5 \cdot 11 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{22}:C_{20}$
Order: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $ab^{25}, b^{8}, b^{20}, c^{11}, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{11}:(C_{10}\times Q_{16})$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}.(C_{10}\times D_4).C_2^4$
$\operatorname{Aut}(H)$ $D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times C_{44}.C_{10}$
Normal closure:$C_2\times C_{44}.C_{10}$
Core:$C_{22}:C_{10}$
Minimal over-subgroups:$C_2\times C_{44}.C_{10}$
Maximal under-subgroups:$C_{22}:C_{10}$$C_{11}:C_{20}$$C_{11}:C_{20}$$C_{22}:C_4$$C_2\times C_{20}$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{22}:C_{10}$