Properties

Label 1760.333.40.e1.b1
Order $ 2^{2} \cdot 11 $
Index $ 2^{3} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}:C_4$
Order: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Generators: $b^{5}c, c^{2}, b^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{22}.(D_4\times C_{10})$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_{20}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
Outer Automorphisms: $C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^3\times C_{22}).C_5.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_{22}.(D_4\times C_{10})$
Complements:$C_2\times C_{20}$ $C_2\times C_{20}$ $C_2\times C_{20}$ $C_2\times C_{20}$
Minimal over-subgroups:$C_{11}:C_{20}$$C_{22}:C_4$$C_{22}:C_4$$C_{22}:C_4$
Maximal under-subgroups:$C_{22}$$C_4$
Autjugate subgroups:1760.333.40.e1.a11760.333.40.e1.c11760.333.40.e1.d1

Other information

Möbius function$0$
Projective image$D_{22}:C_{20}$