Properties

Label 1760.303.16.a1.a1
Order $ 2 \cdot 5 \cdot 11 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}:C_{10}$
Order: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $c^{2}, b^{4}, a^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 5$.

Ambient group ($G$) information

Description: $(C_4\times D_{11}):C_{20}$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2\times C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Outer Automorphisms: $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}.(C_{10}\times D_4).C_2^3$
$\operatorname{Aut}(H)$ $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_4:C_4$
Normalizer:$(C_4\times D_{11}):C_{20}$
Minimal over-subgroups:$C_{22}:C_{10}$$C_2\times F_{11}$$C_2\times F_{11}$$C_{11}:C_{20}$$C_{11}:C_{20}$$C_{11}:C_{20}$$C_{11}:C_{20}$
Maximal under-subgroups:$C_{11}:C_5$$C_{22}$$C_{10}$

Other information

Möbius function$0$
Projective image$D_{22}:C_{20}$