Properties

Label 1760.292.8.a1.a1
Order $ 2^{2} \cdot 5 \cdot 11 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{22}:C_{10}$
Order: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $b^{10}c^{22}, b^{4}, c^{4}, c^{22}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{11}:(D_4\times C_{20})$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}:C_5.C_2^6.C_2$
$\operatorname{Aut}(H)$ $S_3\times F_{11}$, of order \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(64\)\(\medspace = 2^{6} \)
$W$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2^2:C_4$
Normalizer:$C_{11}:(D_4\times C_{20})$
Minimal over-subgroups:$C_2\times C_{22}:C_{10}$$C_2^2\times F_{11}$$C_{22}:C_{20}$$C_{22}:C_{20}$$C_{22}:C_{20}$$C_{22}:C_{20}$$C_{22}:C_{20}$
Maximal under-subgroups:$C_{11}:C_{10}$$C_{11}:C_{10}$$C_{11}:C_{10}$$C_2\times C_{22}$$C_2\times C_{10}$

Other information

Möbius function$-8$
Projective image$C_2^2\times F_{11}$