Properties

Label 1760.292.10.c1.a1
Order $ 2^{4} \cdot 11 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2.D_{22}$
Order: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Generators: $ac^{11}, c^{22}, b^{10}c^{22}, b^{5}c^{11}, c^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{11}:(D_4\times C_{20})$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}:C_5.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_2^3:S_4\times F_{11}$, of order \(21120\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \cdot 11 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^4\times F_{11}$, of order \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_{11}:(D_4\times C_{20})$
Complements:$C_{10}$ $C_{10}$
Minimal over-subgroups:$C_2^3.F_{11}$$C_2^3.D_{22}$
Maximal under-subgroups:$C_2^2\times C_{22}$$C_{22}:C_4$$C_{22}:C_4$$C_{22}:C_4$$C_{22}:C_4$$C_2^2\times C_4$

Other information

Möbius function$1$
Projective image$C_2^2\times F_{11}$