Properties

Label 1760.282.5.a1.a1
Order $ 2^{5} \cdot 11 $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:D_{11}$
Order: \(352\)\(\medspace = 2^{5} \cdot 11 \)
Index: \(5\)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Generators: $a^{5}, b^{4}, c, b^{22}, b^{11}, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_4^2:F_{11}$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^3\times C_{11}:C_5).C_2^5$
$\operatorname{Aut}(H)$ $(C_2^3\times C_{11}:C_5).C_2^5$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(14080\)\(\medspace = 2^{8} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_4^2:F_{11}$
Complements:$C_5$
Minimal over-subgroups:$C_4^2:F_{11}$
Maximal under-subgroups:$C_4\times D_{22}$$D_{22}:C_4$$D_{22}:C_4$$C_4\times C_{44}$$C_{44}:C_4$$C_{22}.D_4$$C_{22}.D_4$$C_4^2:C_2$

Other information

Möbius function$-1$
Projective image$C_2\times F_{11}$