Properties

Label 1760.282.20.a1.a1
Order $ 2^{3} \cdot 11 $
Index $ 2^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_{22}$
Order: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $a^{5}, c^{2}, b^{4}, b^{22}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_4^2:F_{11}$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^3\times C_{11}:C_5).C_2^5$
$\operatorname{Aut}(H)$ $S_4\times F_{11}$, of order \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_4^2:F_{11}$
Minimal over-subgroups:$C_2^2\times F_{11}$$C_4\times D_{22}$$D_{22}:C_4$$D_{22}:C_4$
Maximal under-subgroups:$C_2\times C_{22}$$D_{22}$$D_{22}$$D_{22}$$D_{22}$$C_2^3$

Other information

Möbius function$-2$
Projective image$C_2^2\times F_{11}$