Properties

Label 1760.282.2.d1.a1
Order $ 2^{4} \cdot 5 \cdot 11 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{44}:C_{20}$
Order: \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
Index: \(2\)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $a^{5}b, b^{4}, a^{2}, b^{22}c^{2}, c, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_4^2:F_{11}$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^3\times C_{11}:C_5).C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\wr C_2\times F_{11}$, of order \(3520\)\(\medspace = 2^{6} \cdot 5 \cdot 11 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2\wr C_2\times F_{11}$, of order \(3520\)\(\medspace = 2^{6} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_4^2:F_{11}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_4^2:F_{11}$
Maximal under-subgroups:$C_{22}:C_{20}$$C_{22}:C_{20}$$C_{22}:C_{20}$$C_{44}:C_4$$C_4\times C_{20}$

Other information

Möbius function$-1$
Projective image$C_2\times F_{11}$