Properties

Label 1760.1272.110.a1
Order $ 2^{4} $
Index $ 2 \cdot 5 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Exponent: \(2\)
Generators: $\left(\begin{array}{rr} 1 & 22 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 23 & 22 \\ 22 & 23 \end{array}\right), \left(\begin{array}{rr} 21 & 22 \\ 22 & 21 \end{array}\right), \left(\begin{array}{rr} 23 & 0 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_2^4\times F_{11}$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $F_{11}$
Order: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Automorphism Group: $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}:C_5.C_2^5.A_8$
$\operatorname{Aut}(H)$ $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^4\times F_{11}$
Normalizer:$C_2^4\times F_{11}$
Complements:$F_{11}$
Minimal over-subgroups:$C_2^3\times C_{22}$$C_2^3\times C_{10}$$C_2^5$
Maximal under-subgroups:$C_2^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-11$
Projective image$F_{11}$