Subgroup ($H$) information
| Description: | $C_1$ |
| Order: | $1$ |
| Index: | \(176\)\(\medspace = 2^{4} \cdot 11 \) |
| Exponent: | $1$ |
| Generators: | |
| Nilpotency class: | $0$ |
| Derived length: | $0$ |
The subgroup is the commutator subgroup (hence characteristic and normal), the Frattini subgroup, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group (for every $p$), perfect, and rational.
Ambient group ($G$) information
| Description: | $C_2^3\times C_{22}$ |
| Order: | \(176\)\(\medspace = 2^{4} \cdot 11 \) |
| Exponent: | \(22\)\(\medspace = 2 \cdot 11 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).
Quotient group ($Q$) structure
| Description: | $C_2^3\times C_{22}$ |
| Order: | \(176\)\(\medspace = 2^{4} \cdot 11 \) |
| Exponent: | \(22\)\(\medspace = 2 \cdot 11 \) |
| Automorphism Group: | $C_{10}\times A_8$, of order \(201600\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
| Outer Automorphisms: | $C_{10}\times A_8$, of order \(201600\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{10}\times A_8$, of order \(201600\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
| $\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_2^3\times C_{22}$ | |
| Normalizer: | $C_2^3\times C_{22}$ | |
| Complements: | $C_2^3\times C_{22}$ | |
| Minimal over-subgroups: | $C_{11}$ | $C_2$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-64$ |
| Projective image | $C_2^3\times C_{22}$ |