Properties

Label 176.42.176.a1
Order $ 1 $
Index $ 2^{4} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_1$
Order: $1$
Index: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Exponent: $1$
Generators:
Nilpotency class: $0$
Derived length: $0$

The subgroup is the commutator subgroup (hence characteristic and normal), the Frattini subgroup, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group (for every $p$), perfect, and rational.

Ambient group ($G$) information

Description: $C_2^3\times C_{22}$
Order: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Quotient group ($Q$) structure

Description: $C_2^3\times C_{22}$
Order: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Automorphism Group: $C_{10}\times A_8$, of order \(201600\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Outer Automorphisms: $C_{10}\times A_8$, of order \(201600\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{10}\times A_8$, of order \(201600\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^3\times C_{22}$
Normalizer:$C_2^3\times C_{22}$
Complements:$C_2^3\times C_{22}$
Minimal over-subgroups:$C_{11}$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-64$
Projective image$C_2^3\times C_{22}$