Subgroup ($H$) information
| Description: | $D_{11}$ |
| Order: | \(22\)\(\medspace = 2 \cdot 11 \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(22\)\(\medspace = 2 \cdot 11 \) |
| Generators: |
$bc^{22}, c^{4}$
|
| Derived length: | $2$ |
The subgroup is normal, a direct factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $Q_8\times D_{11}$ |
| Order: | \(176\)\(\medspace = 2^{4} \cdot 11 \) |
| Exponent: | \(44\)\(\medspace = 2^{2} \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $Q_8$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times S_4\times F_{11}$, of order \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \) |
| $\operatorname{Aut}(H)$ | $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| $\operatorname{res}(S)$ | $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $W$ | $D_{11}$, of order \(22\)\(\medspace = 2 \cdot 11 \) |
Related subgroups
| Centralizer: | $Q_8$ | |
| Normalizer: | $Q_8\times D_{11}$ | |
| Complements: | $Q_8$ $Q_8$ $Q_8$ $Q_8$ | |
| Minimal over-subgroups: | $D_{22}$ | |
| Maximal under-subgroups: | $C_{11}$ | $C_2$ |
| Autjugate subgroups: | 176.33.8.b1.a1 |
Other information
| Möbius function | $0$ |
| Projective image | $Q_8\times D_{11}$ |