Properties

Label 1756920.c.14520.A
Order $ 11^{2} $
Index $ 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2$
Order: \(121\)\(\medspace = 11^{2} \)
Index: \(14520\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \)
Exponent: \(11\)
Generators: $\left(\begin{array}{rr} 89 & 0 \\ 0 & 89 \end{array}\right), \left(\begin{array}{rr} 12 & 99 \\ 22 & 111 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_5\times C_{11}^4:D_{12}$
Order: \(1756920\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{4} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_5\times C_{11}^2:D_{12}$
Order: \(14520\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Automorphism Group: $C_{11}^2.C_6.C_{10}.C_4.C_2^3$
Outer Automorphisms: $D_4\times C_{20}$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(255552000\)\(\medspace = 2^{9} \cdot 3 \cdot 5^{3} \cdot 11^{3} \)
$\operatorname{Aut}(H)$ $\GL(2,11)$, of order \(13200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{11}^4:C_{60}$
Normalizer:$C_5\times C_{11}^4:D_{12}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_5\times C_{11}^2:D_{132}$