Subgroup ($H$) information
| Description: | $C_3^2:S_3^2$ | 
| Order: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) | 
| Index: | \(54\)\(\medspace = 2 \cdot 3^{3} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | 
		
    $a^{3}b^{3}de^{8}, d, f, e^{9}, e^{6}, b^{2}ce^{12}$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_3^4.S_3^3$ | 
| Order: | \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \) | 
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3.C_3^4.C_2^2\times S_3$ | 
| $\operatorname{Aut}(H)$ | $C_3^2:\GL(2,3)\times D_6$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) | 
| $W$ | $S_3\times C_3^2:D_6$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $9$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $0$ | 
| Projective image | $C_3^4.S_3^3$ |