Properties

Label 17496.no.36.k1
Order $ 2 \cdot 3^{5} $
Index $ 2^{2} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:D_9$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $b^{3}, e^{6}, d, de^{14}, f, cde^{12}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_3^4.S_3^3$
Order: \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_6\times S_3$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_3^4.C_2^2\times S_3$
$\operatorname{Aut}(H)$ $C_3^5.C_3^3.S_3^2.C_2$
$W$$\SL(2,29)$, of order \(24360\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 29 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3^4.S_3^3$
Minimal over-subgroups:$C_3^5.S_3$$C_3^4.(C_3\times S_3)$$C_3^4.(C_3\times S_3)$$C_3^3:D_{18}$$C_3^3:D_{18}$$C_3^3:D_{18}$
Maximal under-subgroups:$C_3^3:C_9$$C_3^3:C_6$$C_3^2:D_9$$C_3^2:D_9$$C_3^2:D_9$$C_3^2:D_9$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$6$
Projective image$C_3^4.S_3^3$