Properties

Label 17496.no.24.d1
Order $ 3^{6} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3.C_3^3$
Order: \(729\)\(\medspace = 3^{6} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $a^{2}, b^{2}ce^{6}, de^{2}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3^4.S_3^3$
Order: \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2\times D_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Outer Automorphisms: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_3^4.C_2^2\times S_3$
$\operatorname{Aut}(H)$ $C_3^5.C_3^4.D_6$
$W$$C_3^3:D_6$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)

Related subgroups

Centralizer:$S_3\times C_3^2$
Normalizer:$C_3^4.S_3^3$
Complements:$C_2\times D_6$
Minimal over-subgroups:$C_3\times C_3^4.C_3^2$$C_3^4.(C_3\times S_3)$$C_3^4.(C_3\times S_3)$$C_9:C_3^3:S_3$$C_2\times C_3^3.C_3^3$$C_3^4.(C_3\times S_3)$$C_3^4.(C_3\times S_3)$$C_9:C_3^3:S_3$
Maximal under-subgroups:$C_3^4:C_3$$C_3^4.C_3$$C_3^3.C_3^2$$C_9:C_3^3$$C_3^3.C_3^2$$C_3^3.C_3^2$$C_3^3.C_3^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$24$
Projective image$C_3^4.S_3^3$