Properties

Label 17496.no.18.u1
Order $ 2^{2} \cdot 3^{5} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3.C_6^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a^{3}b^{3}de^{8}, f, e^{6}, e^{9}, d, a^{2}cd^{2}e^{12}, de^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_3^4.S_3^3$
Order: \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_3^4.C_2^2\times S_3$
$\operatorname{Aut}(H)$ $C_3^4:(S_3\times D_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$W$$C_3\times S_3^3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3^2.S_3^3$
Normal closure:$(C_3^3.C_3^3):C_2\times S_3$
Core:$S_3\times C_3^3$
Minimal over-subgroups:$C_3^2:(C_2\times C_9:C_3)\times S_3$$C_3^2.S_3^3$
Maximal under-subgroups:$C_3^4.C_6$$C_3^4.C_6$$C_3^4.C_6$$C_3^2.C_6^2$$C_3^2.C_6^2$$C_3^2\times S_3^2$$C_9\times S_3^2$$C_9\times S_3^2$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^4.S_3^3$