Subgroup ($H$) information
| Description: | $C_3^3.C_6^2$ |
| Order: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
| Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Generators: |
$a^{3}b^{3}de^{8}, f, e^{6}, e^{9}, d, a^{2}cd^{2}e^{12}, de^{2}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
| Description: | $C_3^4.S_3^3$ |
| Order: | \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3.C_3^4.C_2^2\times S_3$ |
| $\operatorname{Aut}(H)$ | $C_3^4:(S_3\times D_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) |
| $W$ | $C_3\times S_3^3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $9$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $C_3^4.S_3^3$ |