Properties

Label 17496.no.162.f1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2 \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_6$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{3}f, e^{6}, e^{9}, d, cde^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^4.S_3^3$
Order: \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_3^4.C_2^2\times S_3$
$\operatorname{Aut}(H)$ $C_6^2:\GL(2,3)$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$W$$C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_2\times C_3^4:D_6$
Normal closure:$C_3^3:D_{18}$
Core:$C_3^3$
Minimal over-subgroups:$C_3^2:C_6^2$$C_3^2:C_6^2$$C_3^2:C_6^2$$C_3^2:D_{18}$$C_3^2:S_3^2$$C_6:S_3^2$
Maximal under-subgroups:$C_3^2\times C_6$$C_3^2:C_6$$C_3^2:C_6$$C_6\times S_3$$C_6\times S_3$$C_6:S_3$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-3$
Projective image$C_3^4.S_3^3$