Properties

Label 172800.bm.8640.M
Order $ 2^{2} \cdot 5 $
Index $ 2^{6} \cdot 3^{3} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$F_5$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(5,6,7,8), (5,8,9,6,7), (5,7)(6,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $A_4\times F_5\times S_6$
Order: \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $A_4\times S_6$
Order: \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Automorphism Group: $S_4\times S_6:C_2$, of order \(34560\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5 \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $2$

The quotient is nonabelian and nonsolvable.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5.A_6.C_2^2\times S_4$
$\operatorname{Aut}(H)$ $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$A_4\times S_6$
Normalizer:$A_4\times F_5\times S_6$
Complements:$A_4\times S_6$ $A_4\times S_6$
Minimal over-subgroups:$C_3\times F_5$$C_3\times F_5$$C_2\times F_5$$C_2\times F_5$
Maximal under-subgroups:$D_5$$C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4\times F_5\times S_6$