Subgroup ($H$) information
Description: | $C_3^2$ |
Order: | \(9\)\(\medspace = 3^{2} \) |
Index: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Exponent: | \(3\) |
Generators: |
$b^{2}c^{16}, c^{8}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_{24}.(C_6\times D_6)$ |
Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $\OD_{32}:C_6$ |
Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Automorphism Group: | $C_2^5.D_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Outer Automorphisms: | $C_{12}:C_2^3$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Nilpotency class: | $2$ |
Derived length: | $2$ |
The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(A_4\times \He_3).C_2.C_2^5$ |
$\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
$W$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Centralizer: | $C_8.C_6^2$ | ||
Normalizer: | $C_{24}.(C_6\times D_6)$ | ||
Complements: | $\OD_{32}:C_6$ | ||
Minimal over-subgroups: | $\He_3$ | $C_3\times C_6$ | $C_3\times C_6$ |
Maximal under-subgroups: | $C_3$ | $C_3$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_{24}.(C_6\times D_6)$ |