Subgroup ($H$) information
Description: | $C_{18}$ |
Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Index: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Generators: |
$c, a^{4}d^{28}, d^{12}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $D_{18}:(C_4\times C_{12})$ |
Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_9.(C_2^5\times C_6).C_2^5$ |
$\operatorname{Aut}(H)$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\card{W}$ | \(3\) |
Related subgroups
Centralizer: | $C_{18}.C_4^2$ | ||
Normalizer: | $C_6.C_{12}^2$ | ||
Normal closure: | $C_9:C_6$ | ||
Core: | $C_6$ | ||
Minimal over-subgroups: | $C_9:C_6$ | $C_2\times C_{18}$ | $C_2\times C_{18}$ |
Maximal under-subgroups: | $C_9$ | $C_6$ |
Other information
Number of subgroups in this autjugacy class | $2$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | not computed |