Properties

Label 1728.7359.6.b1.a1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.C_2^3$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $b^{9}, c^{6}, b^{18}, c^{3}, c^{4}, a^{2}, b^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^2.(D_6\times C_{36})$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6.(C_2^5\times C_6).C_2^5$
$\operatorname{Aut}(H)$ $C_3:(C_2^2\times C_2^5.C_2^3.C_2)$
$\card{W}$\(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_{36}$
Normalizer:$C_2^2.(D_6\times C_{36})$
Minimal over-subgroups:$C_2\times C_{12}:C_{36}$$C_2^2.(C_{12}\times D_6)$
Maximal under-subgroups:$C_2\times C_6\times C_{12}$$C_6^2:C_4$$C_6^2:C_4$$C_{12}:C_{12}$$C_{12}:C_{12}$$C_{12}:C_{12}$$C_{12}:C_{12}$$C_6:C_4^2$$C_2\times C_4\times C_{12}$

Other information

Möbius function not computed
Projective image not computed