Properties

Label 1728.7359.16.d1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times C_{18}$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $b^{18}c^{6}, b^{12}, c^{6}, b^{4}, c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and metacyclic.

Ambient group ($G$) information

Description: $C_2^2.(D_6\times C_{36})$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2\times C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Outer Automorphisms: $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6.(C_2^5\times C_6).C_2^5$
$\operatorname{Aut}(H)$ $S_3\times C_3^2:D_6$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_6.C_{12}^2$
Normalizer:$C_2^2.(D_6\times C_{36})$
Minimal over-subgroups:$C_2\times C_6\times C_{18}$$C_6\times C_{36}$$C_6\times C_{36}$$C_6:C_{36}$$C_6:C_{36}$$C_6:C_{36}$$C_6:C_{36}$
Maximal under-subgroups:$C_3\times C_{18}$$C_3\times C_{18}$$C_3\times C_{18}$$C_6^2$$C_2\times C_{18}$$C_2\times C_{18}$

Other information

Möbius function not computed
Projective image not computed