Properties

Label 1728.47887.4.g1
Order $ 2^{4} \cdot 3^{3} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_6^2$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(7,8,9), (1,6,3)(2,5,4), (3,6)(4,5), (10,12)(11,13), (10,11)(12,13), (1,2)(3,5)(4,6), (2,4,5)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_6^2:D_6$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_2^4:C_3.C_4.C_2^3\times S_3$
$\operatorname{Aut}(H)$ $D_6^2:(C_2^2\times S_4)$, of order \(13824\)\(\medspace = 2^{9} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_2\times D_6^2:D_6$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$D_6^2:D_6$
Complements:$C_2^2$ $C_2^2$
Minimal over-subgroups:$S_3\times D_6^2$$D_6^2:S_3$$D_6^2:C_6$
Maximal under-subgroups:$C_6\times S_3^2$$C_6^2:C_6$$C_6\times S_3^2$$S_3\times C_6^2$$D_6^2$$C_6^2:C_2^2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$2$
Projective image$S_3^3:C_2$