Properties

Label 1728.47777.6.a1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:C_2^3$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 31 & 24 \\ 8 & 23 \end{array}\right), \left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 24 & 25 \end{array}\right), \left(\begin{array}{rr} 19 & 0 \\ 0 & 19 \end{array}\right), \left(\begin{array}{rr} 25 & 12 \\ 12 & 13 \end{array}\right), \left(\begin{array}{rr} 17 & 9 \\ 0 & 35 \end{array}\right), \left(\begin{array}{rr} 1 & 9 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6^3:C_2^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^6.C_2^4.S_3^3.C_2$
$\operatorname{Aut}(H)$ $S_3\times C_2^5.C_2^4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\card{W}$\(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_6^2$
Normalizer:$C_6^3:C_2^3$
Complements:$C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$
Minimal over-subgroups:$D_{12}:C_6^2$$C_6^2:C_2^4$
Maximal under-subgroups:$C_6^2:C_2^2$$C_6^2:C_2^2$$C_4:C_6^2$$C_{12}\times D_6$$C_6\times D_{12}$$C_{12}:D_6$$D_4\times D_6$$C_{12}:C_2^3$

Other information

Number of subgroups in this autjugacy class$96$
Number of conjugacy classes in this autjugacy class$96$
Möbius function not computed
Projective image not computed