Properties

Label 1728.47777.576.a1
Order $ 3 $
Index $ 2^{6} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(3\)
Generators: $\left(\begin{array}{rr} 13 & 0 \\ 24 & 25 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_6^3:C_2^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_6^2:C_2^4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^7.C_2^4.D_6^2$
Outer Automorphisms: $C_2^3.C_2^6.D_6.C_2$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^6.C_2^4.S_3^3.C_2$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\card{W}$$1$

Related subgroups

Centralizer:$C_6^3:C_2^3$
Normalizer:$C_6^3:C_2^3$
Complements:$C_6^2:C_2^4$
Minimal over-subgroups:$C_3^2$$C_3^2$$C_3^2$$C_6$$C_6$$C_6$$C_6$$C_6$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image not computed