Subgroup ($H$) information
Description: | $C_3$ |
Order: | \(3\) |
Index: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
Exponent: | \(3\) |
Generators: |
$\left(\begin{array}{rr}
13 & 0 \\
24 & 25
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple.
Ambient group ($G$) information
Description: | $C_6^3:C_2^3$ |
Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $C_6^2:C_2^4$ |
Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $C_2^7.C_2^4.D_6^2$ |
Outer Automorphisms: | $C_2^3.C_2^6.D_6.C_2$ |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^4.C_2^6.C_2^4.S_3^3.C_2$ |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$\card{W}$ | $1$ |
Related subgroups
Centralizer: | $C_6^3:C_2^3$ | |||||||
Normalizer: | $C_6^3:C_2^3$ | |||||||
Complements: | $C_6^2:C_2^4$ | |||||||
Minimal over-subgroups: | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ |
Maximal under-subgroups: | $C_1$ |
Other information
Number of subgroups in this autjugacy class | $4$ |
Number of conjugacy classes in this autjugacy class | $4$ |
Möbius function | not computed |
Projective image | not computed |