Properties

Label 1728.47489.72.bg1.b1
Order $ 2^{3} \cdot 3 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{12}$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(3,5)(4,7)(6,8)(9,14)(10,11)(12,13), (9,11,12)(10,14,13), (1,3,2,5)(4,8,6,7), (1,2)(3,5)(4,6)(7,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $(Q_8\times C_3^2):S_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^4:\He_3.C_2^4$
$\operatorname{Aut}(H)$ $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_3:D_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_6^2.D_4$
Normal closure:$(C_3\times Q_8):S_4$
Core:$C_6$
Minimal over-subgroups:$C_3\times D_{12}$$C_2\times D_{12}$$C_3:D_8$$Q_8:S_3$
Maximal under-subgroups:$D_6$$C_{12}$$D_4$
Autjugate subgroups:1728.47489.72.bg1.a1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$C_6^2:S_4$