Properties

Label 1728.47489.24.u1.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times \SL(2,3)$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(9,12,11)(10,14,13), (1,7,2,8)(3,4,5,6), (1,4,2,6)(3,8,5,7), (3,7,4)(5,8,6), (1,2)(3,5)(4,6)(7,8)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable.

Ambient group ($G$) information

Description: $(Q_8\times C_3^2):S_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^4:\He_3.C_2^4$
$\operatorname{Aut}(H)$ $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_3^2:\GL(2,3)$
Normal closure:$C_3\times Q_8:A_4$
Core:$C_3\times Q_8$
Minimal over-subgroups:$C_3\times Q_8:A_4$$C_3^2\times \SL(2,3)$$C_3\times \GL(2,3)$
Maximal under-subgroups:$C_3\times Q_8$$\SL(2,3)$$\SL(2,3)$$C_3\times C_6$
Autjugate subgroups:1728.47489.24.u1.b11728.47489.24.u1.c11728.47489.24.u1.d11728.47489.24.u1.e11728.47489.24.u1.f1

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$-3$
Projective image$(C_2\times C_6):S_4$