Properties

Label 1728.47367.24.n1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.D_6$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $abc^{3}de^{6}, e^{4}, be^{3}, e^{6}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $Q_8:S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.D_6^2$
$\operatorname{Aut}(H)$ $C_2^4.\SL(3,3)$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
$\card{W}$\(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_4.D_6^2$
Normal closure:$C_6.S_3^2$
Core:$C_3^2:C_4$
Minimal over-subgroups:$C_6.S_3^2$$C_{12}:D_6$$C_{12}.D_6$$D_6.D_6$$D_6.D_6$
Maximal under-subgroups:$C_3^2:C_4$$C_6^2$$C_3^2:C_4$$C_6:C_4$$C_6:C_4$

Other information

Number of subgroups in this autjugacy class$27$
Number of conjugacy classes in this autjugacy class$9$
Möbius function not computed
Projective image not computed